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A new method is developed to find primitive elements in the Galois field of q°
elements GF(q?), where q is a Mersenne prime. Such primitive elements are needed to

implement transforms over GF(q? ).

l. Introduction

Several authors (Refs. 1 and 10) have proposed the use of
the fast Fourer transform (FFT) over finite fields or rings.
Such transforms can be used to compute circular convolutions
of real sequences without round-off error. In Ref. 5, the
authors extended the integer transforms of Rader by defining
a complex number-theoretic transform over the Galois field
GF(q?), where ¢ = 2P - 1 is a Mersenne prime forp =2, 3, 5,
7,13, 17, 19, 31, 61, - -- . An algorithm was developed to
compute elements of order 2% for 1 <k < p + 1. With this, an
FFT algorithm of length 2% was developed over GF(g?).
Recently, the authors in Refs. 11 and 12 stated without proof
the following result:

Let GF(q?) be a Galois field, where ¢ is a Mersenne prime.
If di(g2-1),where d =2% - m, modd,3<k<p+1,and
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where plm for p <m < 2P~1 - 1, then there exists a generator
o of the multiplicative subgroup G, of order d, such that o
satisfies

o?/® = (1 +7) mod ¢
o?/8 = one of forms +2(P~1)/2 (1 iﬂ mod g

dja

o?’? =jor-imodg

and

412 = -1 mod ¢ 1)



Using the above properties in GF(g?), a mixed high-radix
transform of 2% - p points over GF(g?), where 3<k<p + 1,
can be developed. Such an algorithm for GF(gq?) appears
comparable in speed to that given by Winograd (Ref. 13).

In this article, a new method is presented for finding the
primitive elements of GF(g?). Also a technique for finding an
element of order d that satisfies Eq. (1) is given.

ll. An Algorithm for Finding Primitive
Elements in GF (q2) where q is a
Mersenne Prime

If ¢ is a Mersenne prime, the order ¢ of the multiplicative
group with generator & of GF(g?) factors as follows:

r=(2P - 1)2 - 1 =2p%1 (2p-1 - ])

To find a primitive element of GF(¢?), the following theorem
is important.

Theorem 1: If ¢ is a prime number, r=¢g" - 1 and ¢ =pi1
pzz pik, where the p; are distinct primes, then v is a
primitive element of GF(q"), if and only if v satisfies the
congruences

1
yP1#£ 1 mod ¢ @)

t/
Y p2$1modq

t/p
v k¥#1modg

Proof: If v is a primitive element of GF(q?), then t = g" -
1 is the smallest positive number such that y* = 1 mod g. Thus
v satisfies the congruences of Eq. (2).

Now assume 7 satisfies congruences Eq. (2) and that r = ¢”
- 1 is not the smallest positive number for which this is true.
Then there exists an integer £ for which 1 <& <z and !¢ such
that ¥* = 1 mod ¢. But when we have

T

for some u and prime p; in the factorization of r. Thus #/p; =
fu. Hence 7” Pi=1mod g. This is contrary to assumption.

If q is a Mersenne prime, then £ = g2 - 1 = 2P+1(2P-1 -
)= 2f+1 . p;2 -p:3 . -pi", where p; # p; for i #j. Assume y
=a +ib is a primitive element of GF(g?). Then, by Theorem 1,
7 satisfies

q°-1
Py _ (aPt1,p-1_ p,p-1_
y 1 =400 /2 = ,2fe D21 mod g
2
g -1 ‘ e2—1 e ey
P 2P Lhp py,". .. p
vy "2 =y 2 3 k # 1 mod ¢
2 _
q -1 e e e, —1
Pr _ 2p+1p22'p33"'pkk
Y =v £ 1 modgq (3)

Since g =2 - 1, it is easily seen that

v?’ = @+ )%’ = (@ +Tb)a +7b)"

q
=@+®) ). (i)cﬂ""(?b)k = (@ +7b)(a? + (b)?) mod ¢
k=0

By Fermat’s theorem,
(a +7b) (@@ + (b)) = (a +ib) (e +79h) mod q
But since ¢ = 3 mod 4,

p -~ ”~.
v =(@+ib)(a-Tb)=a* +b* mod g
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Thus Eq. (3) becomes

a’-1 a1
Py 2, p2v2P 71 2, 2y T
0% = (a° + b%) = (a° +b°) # 1 mod g
2
q -1 e, -1 e e qg-1
P, 2:p,2 ‘p 3. r k 2 Py
y P2 o=@ +p2) P2 3 ko= +p?) "2
#1 mod g
q2—1 e2 €3 ek—l q-1
2.p, % p.>. L. B
¥ Py = (@ + b?) Py P53 " = (& +b2)pk
#1modg “4)

By Theorem 1, the element a® + b2 that satisfies Eq. (4) must
be a primitive element of GF(g). Thus if one can find a
primitive element ¢ in GF(g) such that ¢~ /Pi=1fori = 1,
2, - -+, k, then the problem of finding a primitive element of
GF(q?) is reduced to the problem of solving the congruernce

a2 +b*=cmod g (5)

for g and b.

To solve Eq. (5) let X =4 mod ¢ and let Y =-b? mod g.
Then Eq. (5) becomes

X-c=Ymodg (6)

Proposition: Let ¢ € GF(q), then there exist a, b € GF(q)
such that ¢ =a? + b2

Proofé If ¢ =27, then since 2™ = ¢, it follows that ¢ =
(c2™~1)" + 02 If g is odd, then

CF@)={0,a;, " ,ap ;) ,}

Ufl-a,-a, -

1’74 ’_a(q—l)/2}
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It is readily seen that there are exactly (g + 1)/2 elements o.
the form a? in GF(q), and that there are (g + 1)/2 elements of
the form ¢ - 52 for a fixed ¢ € GF(q). Thus

@ laeGF(@)} N {c-b%lbe GF(g)}+0

Consequently we can express ¢ = a2 + b2,

By the Proposition, one can choose the numbers X and ¥
from the set of integers 1, 2, -- -, 2P - 2, such that X is a
square and Y = X - ¢ is a nonsquare. Thus it is sufficient to let

azEXmodq
b2E—X+cE—Ym0dq (7)

By a procedure precisely similar to that used to find the
solutions of congruence Eq. (14) in Ref. 5, the solutions of
congruence (7) are given by

p-2
a=+x? mod 2P - 1

_ 2P~2
b=+(-Y) mod 27 - 1 8)

The following theorem is often useful for finding solution
of Eq. (5).

Theorem 2: If 3 is a primitive element of GF(g), then the
solution of the congruence

a2+b253modq

for @ and b are given by

and



Proof: Note that 3 =2 - 1 + 3 mod gq. Thus

p—1 -1
3—2P+2—(zT+1)2+(2 2 - )?

=a* +b* mod g

and

are identically the solutions of the congruence.

To find a solution of x° =1 + i mod g where ¢ = 25 - m/8p,
assume y =qa + ihisa primitive element of GF(q?). Then, using
a computer program, one can find an integer j such that Y=1
+Tmod q. Hence

iy@?-1)e = + (@*-1)/c
(") =(1+17)

2 k
=((1+1)F7)@ "D M mod g ©)

where 2% - mlg? - 1.

It was shown in Ref. 12 that the element (1 +7) is an
element of order 8p in GF(g?). Thus Eq. (9) becomes

2
(71)(q “1)/¢ =1 mod ¢
Since v is primitive, this implies ¢ !j. Thus
(/) =1+ mod ¢

where ¢ = 2% « m/8p for 3<k<p- 1,whereplm forp<m
< 2P-! - 1. Hence, o = 9/¢ is an element of order d = 2% - m
in GF(g?) such that « satisfies (1).

Consider a simple example:

Example 1: Let ¢ = 27 - 1 =23 - 1. Thenq -1=
2P+1(2P=1_ 1)=2% . 3. Find an element a = a + ib of GF(7%)
such that satisfies

@’ =1)/8p = (3824 =42 = (1 +T) mod g

a*#/8 =af =2(-1+7) mod ¢
o84 =12 E—?modq
@32 =24 =-1modg

First we note that 3 satisfies the congruences:

7-1
32 =-1%#mod7 (10)

and

7-1
33 =32=2%1mod7

Thus by Theorem 1, 3 is a primitive element of GF(7). Using
Eq. (10) in Eq. (4) and Eq. (5) the problem of finding a
primitive element in GF(g?) is reduced to the solution of the
congruence,

a® +b*=3mod 7 )

By Eq. (6) the solution of Eq. (11) is equivalent to the
solution of

X-3=Ymod7

where X =42 mod 7 and Y =-5? mod 7. It can be shown that
Y = 6 is nonsquare and X =Y + 3 = 9 is a square. Thus, by Eq.
(N,

@ =9=2mod 7

b2 =-6=1mod 7 (12)

193



Hence by Eq. (8), the solution of congruence (12) are given by

-2
a=-22" " =-22=3mod 7

-2
bE(l)zp =(1)*=1mod7

Note that since ¢ = 3 in Eq. (11), the solution of the con-

gruence Eq. (11) can be also obtained by using Theorem 2.
It is evident that Theorem 2 yields the same solution, as
follows:

p-1 3-1
a=Q 2% +1)=27? +1=3

Pt 31
2

-1=2 -1=1

Hence vy = -4 + 7is a primitive element of GF(72). Since (1 +
Y48/2 = (1 +7)2% = 1 mod q, then x2 = 1 +7 has a solution.
To find such a solution it is necessary to find an integer j such

that ¥ = 1 + Tmodg. In this case,j= 14,i.e.,y'* =1 +7Tmod
q- Thus

(y14/2)2 =

=1+ 7modgq

Hence 7' = 1 + Tmod g and the desired element is a =7 of
order 48 in GF(72). Evidently a = v7 satisfies also

QS =(1+7)P=2(-1+T)mod g
a'?2 =-Tmod g
and
o?¥=-1modgq

With the same procedure used in Example 1 and then using
a computer program, the primitive elements for a number of
different Mersenne primes were found. These are shown in
Table 1.
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Table 1. Primitive elements of GF (qz) for different q

Primitive Primitive
q= pLuy| element 2% + b? mod g element
of GF(q) of GF(g?)
3 7 3 32+ 12 347
5 31 3 52 +32 5+73
7 127 3 9% + 72 9+i7
13 32767 17 42412 4+7
17 131071 3 257% +2552 25747255
19 524287 3 513245117 513 +7511
31 2147483647 53 7% + 22 7+72




